Another one is levelling.
A lot of people can see a picture frame is about 0.5° out of level and their fucking eye twitches until they fix it
Me included
That's nuts when you think about it
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
This is a science community. We use the Dawkins definition of meme.
Another one is levelling.
A lot of people can see a picture frame is about 0.5° out of level and their fucking eye twitches until they fix it
Me included
That's nuts when you think about it
Our bodies n brains are so cool. Think about what goes into locating a sound in space.
Edit: there's more to it but at the most basic level your brain calculates the fraction of a second difference between when one ear picks up a sound and when the other does creating a reference point based on that.
That’s boring. Two ears only allow you to put the sound somewhere on a plane (the vertical one that cuts your body in half lengthwise). How do you know the ‘height’ of the sound on that plane? By utilizing the different distortions the sound goes through while being funneled through your auricle.
If you're about to walk into a bar with you head, or like the top of a doorpost or smt. You'll instinctively pull back and avoid the obstacle, inches before it hurts, because your brain notice the hairs on your head moved. That's why men who have recently gone bald, often have bumps and bruises on their head. My bald colleague told me that for him, that was the hardest thing about going bald.
Throwing and catching always amaze me. And it's not something that everyone is ashtrays great at, for sure, but anyone can try to toss a wad of paper into the waste basket. Whether or not you make it, the calculations under the hood, happening so quickly, always astound me to think about.
Read somewhere that catching is actually dead simple, just "move towards the image of the incoming target" (I'm not talking about the arm kinematics).
There were a robot paper bin that zoomed under stuff you threw up in the air using no complicated algorithms for example.
Funnily many algos are calked on physical and chemical effects in the real workld, like splines for example were made with a thin metal bar and lead weight bending it to get the lines used in boat hull construction.
When sharpening knives, with practice you can tell when you are done by sliding your fingertips along (not across) the sharpened bevel. It's possible to feel imperfections measured in micrometers this way.
If the earth were shrank down to the size of a golf ball, you could feel houses.
That seems wildly unnecessary. I can already feel houses.
We have equipment to measure down to microns, and my students often test how fine details they can feel.
I mean, most people do it across, rather than along the blade, what with the necessity of detecting a burr, which can't usually be felt length wise. You slide along the blade, and it is sharp, if you screw up you get cut.
That doesn't take away from what you're saying, it's very true, no matter which direction you're feeling. Just normal, average fingertips can pick up stuff like that, that you'd need a microscope to see. It's a trip!
The burr is also detectable lengthwise. When starting with a dull blade it feels smooth while sliding fingers lenghtwise. When the burr is formed, it starts to feel rough. When it feels like it's digging into skin, it's sharp. It's a very subjective thing though, everybody has different fingers.