YOU CAN DO THAT WITHOUT AI.
Can they, though? Sure, in theory Google could hire millions of people to write overviews that are equally idiotic, but obviously that is not something they would actually do.
I think there's an underlying ethical theory at play here, which goes something like: it is fine to fill internet with half-plagiarized nonsense, as long as nobody dies, or at least, as long as Google can't be culpable.
It used to mean things like false positives in computer vision, where it is sort of appropriate: the AI is seeing something that's not there.
Then the machine translation people started misusing the term when their software mistranslated by adding something that was not present in the original text. They may have been already trying to be misleading with this term, because "hallucination" implies that the error happens when parsing the input text - which distracts from a very real concern about the possibility that what was added was being plagiarized from the training dataset (which carries risk of IP contamination).
Now, what's happening is that language models are very often a very wrong tool for the job. When you want to cite a court case as a precedent, you want a court case that actually existed - not a sample from the underlying probability distribution of possible court cases! LLM peddlers don't want to ever admit that an LLM is the wrong tool for that job, so instead they pretend that it is the right tool that, alas, sometimes "hallucinates".