this post was submitted on 08 Sep 2024
534 points (97.3% liked)

Curated Tumblr

4101 readers
9 users here now

For preserving the least toxic and most culturally relevant Tumblr heritage posts.

The best transcribed post each week will be pinned and receive a random bitmap of a trophy superimposed with the author's username and a personalized message. Here are some OCR tools to assist you in your endeavors.

-web

-iOS

-android

Don't be mean. I promise to do my best to judge that fairly.

founded 2 years ago
MODERATORS
 
all 41 comments
sorted by: hot top controversial new old
[–] Isoprenoid@programming.dev 59 points 4 months ago* (last edited 4 months ago) (3 children)

I like the imagery of the last post because it was tapping into the idea of waves and how sub-atomic particles behave like waves.

However, erm actually πŸ€“ ...

you pet your dog and the electron-orbitals of your skin overlap with the electron-orbitals of his fur

No, they don't overlap. Electrons are negatively charged, and like repels like. The orbitals will repel each other. This repulsion is the reason why you can feel the fur.


Edit: I'm getting nay-sayers that reckon they do. Please provide a reference that explains inter-molecular orbitals that cause bonding for a hand touching fur. The only thing I can think of this happening is for transition states. This would require a chemical reaction. I don't think we categorise "touch" under "requiring a chemical reaction".

Because the structure of the transition state is a first-order saddle point along a potential energy surface, the population of species in a reaction that are at the transition state is negligible. Since being at a saddle point along the potential energy surface means that a force is acting along the bonds to the molecule, there will always be a lower energy structure that the transition state can decompose into. This is sometimes expressed by stating that the transition state has a fleeting existence, with species only maintaining the transition state structure for the time-scale of vibrations of chemical bonds (femtoseconds).

Source: https://en.wikipedia.org/wiki/Transition_state

[–] smeg@feddit.uk 31 points 4 months ago (1 children)

To um actually your um actually, I think orbitals do overlap, isn't that the very concept of atomic bonding and interaction? There's a Wikipedia article but it's way beyond me. Shame we're not in !science_memes@mander.xyz, there's usually a few experts hanging round their to correct me!

[–] someacnt_@lemmy.world 16 points 4 months ago (2 children)

It was far long ago when I learned these stuff, but I recall that orbitals is more about probability to exist at certain points. So orbitals are more "diffuse" and "fuzzy": there is a probability of an electron to exist 5m away from its nuclei, just the probability is astronomically low. Hence, there is no concept of concrete "touch" at this level.

[–] smeg@feddit.uk 12 points 4 months ago (1 children)

Yeah that's my recollection too. The areas where they are likely to exist overlap, and that's what a bond/interaction is. The trouble with this stuff is that every year you studied it they told you that what you learned last year was a complete simplification and not really representative of what really happens!

[–] voracitude@lemmy.world 8 points 4 months ago (1 children)

The trouble with this stuff is that every year you studied it they told you that what you learned last year was a complete simplification and not really representative of what really happens!

The real trouble is that every single year they tell you that, it's true!

[–] julietOscarEcho@sh.itjust.works 8 points 4 months ago (1 children)

It's models all the way down. We don't have access to some ultimate truth. Rather as you delve deeper the model is able to predict more accurately esoteric corners of reality, and/or more parsimoniously tie together the empirical facts we know.

"what really happens" is for dogmatists. If your model has no blind spots you probably haven't been imaginative enough.

[–] voracitude@lemmy.world 3 points 4 months ago

Yeah. That's why it's true every year πŸ˜‰

[–] kittenz@lemmy.blahaj.zone 4 points 4 months ago

Orbitals are actually an approximation, which is what part of the confusion is. The exact math is beyond me, but the idea is that the orbitals represent the most likely place for an electron to be, not the only place. Lots of probability involved, including with how electrons react with each other. Chemical reactions that do happen are just the most likely event, but when you atom by atom things can get really weird. At that scale electron don’t really obey classical physics (which is what intuition usually expects). As a more concrete example, if you take a chemistry class, you probably learn that electrons like to group in pairs of two, which is weird if you think about two negative charges grouping together, but (once a gain with math that I don’t claim to understand) quantum physics does explain this (because of electron β€œspins” which do not spin like in a classical physics sense) even though it is not intuitive from classical mechanics. Similarly orbital rules break down at some points, such as carbon able to to have 4 bonds (the s and p orbital have very similar energy levels if I remember the chemistry right), which you can’t get from the simplified orbitals.

[–] AngryPancake@sh.itjust.works 13 points 4 months ago

I'll write an explanation here, but I'll try to answer all questions from the thread. Also quantum mechanics is complicated, so sorry for the long text.

Electron orbitals are weird and complicated, for hydrogen we can solve them analytically and depending on the quantum number of the energy levels we are looking at, they take the forms as in the picture on Wikipedia:

https://upload.wikimedia.org/wikipedia/commons/thumb/e/e7/Hydrogen_Density_Plots.png/1280px-Hydrogen_Density_Plots.png

Now whatever energy levels and quantum numbers are, what we are seeing is the probability of the location of the outer most electron (ok hydrogen only has one).

To understand bonds, we don't really need the picture of orbitals, but what's important is understanding that electrons occupy shells. A certain number of atoms can fit into a shell and when it's full, the electrons start a new shell. It gets complicated quickly with more electrons, however in the simpler case, a shell can fit 2n^2 electrons, where n is the shell number. So for n=1, a maximum of 2 electrons can fit, for n=2, a maximum of 8 electrons can fit.

Shells want to be filled, so that leads to two possible bond types. If an atom with a free electron comes close to an atom that has a free spot for an electron, the electron can hop over to the other atom, at which point we have an ionic bond (the atom that loses the electron loses one electric charge and is thus positively charged, the other atoms gains an electric charge and is then negatively charged, so they want to be together).

Another option is covalent bonding, where instead of an electron jumping to another atom, the atoms actually share the electron.

Now do orbitals overlap? I wouldn't give that question a yes or no, because, at that level, we can't really separate atoms anymore. When the atoms are far apart we can draw separate orbitals for both, but when they get together, new orbitals form that is the solution of the electronic configuration of the new molecule we just created. It's more like the orbitals that we have get deformed into new orbitals.

[–] drolex@sopuli.xyz 4 points 4 months ago

Is it electrons travelling in your brain that made you think that?

I have read about solipsism but I refuse to believe information I gathered from materials made from quarks and gluons, transported to my body via photons

[–] cpw@lemmy.ca 32 points 4 months ago (1 children)

Physics needs more poets who understand physics.

[–] niktemadur@lemmy.world 10 points 4 months ago (1 children)

Poetry needs more physicists who understand poetry, too!
In this case we end up with things getting called fun names like "quarks" instead of W- Boson and arid things like that.

[–] julietOscarEcho@sh.itjust.works 3 points 4 months ago (1 children)

Perfect example! Quarks taking their name from finnegans wake! Sure, science is more than poetry, but the poetry of it is pretty important to scientific culture (and therefore to making progress).

[–] Gustephan@lemmy.world 3 points 4 months ago

Quarks are forever ruined by the decision to get rid of the truth and beauty quark nomenclature in favor of top and bottom. Iirc it was done because some physicist was afraid of a headline "physicists fail to find truth" when they were trying to prove the existence of the top quark

[–] NigelFrobisher@aussie.zone 20 points 4 months ago (1 children)

It’s only gay if the atoms touch.

[–] janus2@lemmy.zip 3 points 4 months ago

putting a whole new modern spin on the "gay bomb"

[–] gmtom@lemmy.world 12 points 4 months ago (1 children)

Yeah that's not how it works. Without even going into quantum mechanics or really any advanced physics, something low energy like petting a dog, the electrons in your hand are going to repel the electrons in his fur way before any orbital get close to overlapping.

The only time you can even consider orbitsls as overlapping is during molecular bonding. (And even then in QM the electrons still have sperate orbital, they just go around both atoms.)

[–] WolfLink@sh.itjust.works 13 points 4 months ago* (last edited 4 months ago)

I think they meant β€œelectric field” rather than β€œorbital”.

Not to mention that orbitals β€œexist” infinitely (with negligible strength/probability).

[–] flerp@lemm.ee 9 points 4 months ago (1 children)

Gravitational forces affect everything no matter how vast the distance, yes the force will be so small that it will have no effect, but the field is touching it. Which means that through gravitational fields, you are touching the furthest planet in the galaxy, your beloved pets, your best friend, your last bowel movement, etc. etc. So romantic!

[–] MeDuViNoX@sh.itjust.works 5 points 4 months ago

Your mother has an exceptional gravitational force and I can feel it from here. 😎

[–] LucidNightmare@lemm.ee 6 points 4 months ago

This has always been my favorite little did you know thing. Thanks for sharing!