this post was submitted on 06 May 2024
71 points (87.4% liked)

ich_iel

9097 readers
1 users here now

Die offizielle Zweigstelle von ich_iel im Fediversum.

Alle Pfosten müssen den Titel 'ich_iel' haben, der Unterstrich darf durch ein beliebiges Symbol oder Bildschriftzeichen ersetzt werden. Ihr dürft euch frei entfalten!


Matrix


📱 Empfohlene Schlaufon-Applikationen für Lassmich


Befreundete Kommunen:


Regeln:

1. Seid nett zueinander

Diskriminierung anderer Benutzer, Beleidigungen und Provokationen sind verboten.

2. Pfosten müssen den Titel 'ich_iel' oder 'ich iel' haben

Nur Pfosten mit dem Titel 'ich_iel' oder 'ich iel' sind zugelassen. Alle anderen werden automatisch entfernt.

Unterstrich oder Abstand dürfen durch ein beliebiges Textsymbol oder bis zu drei beliebige Emojis ersetzt werden.

3. Keine Hochwähl-Maimais oder (Eigen)werbungAlle Pfosten, die um Hochwählis bitten oder Werbung beinhalten werden entfernt. Hiermit ist auch Eigenwerbung gemeint, z.b. für andere Gemeinschaften.
4. Keine Bildschirmschüsse von UnterhaltungenAlle Pfosten, die Bildschirmschüsse von Unterhaltungen, wie beispielsweise aus WasistApplikaton oder Zwietracht zeigen, sind nicht erlaubt. Hierzu zählen auch Unterhaltungen mit KIs.
5. Keine kantigen Beiträge oder Meta-Beiträgeich_iel ist kein kantiges Maimai-Brett. Meta-Beiträge, insbesondere über gelöschte oder gesperrte Beiträge, sind nicht erlaubt.
6. Keine ÜberfälleWer einen Überfall auf eine andere Gemeinschaft plant, muss diesen zuerst mit den Mods abklären. Brigadieren ist strengstens verboten.
7. Keine Ü40-MaimaisMaimais, die es bereits in die WasistApplikation-Familienplauderei geschafft haben oder von Rüdiger beim letzten Stammtisch herumgezeigt wurden, sind besser auf /c/ichbin40undlustig aufgehoben.
8. ich_iel ist eine humoristische PlattformAlle Pfosten auf ich_iel müssen humorvoll gestaltet sein. Humor ist subjektiv, aber ein Pfosten muss zumindest einen humoristischen Anspruch haben. Die Atmosphäre auf ich_iel soll humorvoll und locker gehalten werden.
9. Keine Polemik, keine Köderbeiträge, keine FalschmeldungenBeiträge, die wegen Polemik negativ auffallen, sind nicht gestattet. Desweiteren sind Pfosten nicht gestattet, die primär Empörung, Aufregung, Wut o.Ä. über ein (insbesonders, aber nicht nur) politisches Thema hervorrufen sollen. Die Verbreitung von Falschmeldungen ist bei uns nicht erlaubt.


Bitte beachtet auch die Regeln von Feddit.de

founded 1 year ago
MODERATORS
71
ich♾️iel (discuss.tchncs.de)
submitted 6 months ago* (last edited 6 months ago) by EherVielleicht@discuss.tchncs.de to c/ich_iel@feddit.de
 
you are viewing a single comment's thread
view the rest of the comments
[–] neeeeDanke@feddit.de 6 points 6 months ago (3 children)

Ne, wenn ich pi nehme und alle Einsen durch Nullen ersetze ist es ja immer noch eine irrationale Zahl*, enthält aber (offensichtlich) nicht alle möglichen Zahlenfolgen.

Aber trotzdem ne faire Frage, verstehe nicht warum das runtergewählt wurde.

*Ich weiß nicht, ob das zwingend mit Einsen geht, aber falls das nicht geht kann ich alle Ziffern die nicht eins sind durch Null ersetzen und das muss dan irrational sein. (Bew. per Wiederspruch: ) Ansonsten könnte ich ja die beiden so erhaltenen Zahlen (wo ich die einsen und nicht-einsen ersetzt habe) nehmen und annehmen dass sie rational wären, dann wäre aber ihre Summe (also π) rational.

[–] usb_finger@feddit.de 4 points 6 months ago (1 children)

Nur weil eine Zahl unendlich lang ist, heißt das noch nicht, dass sie irrational ist. Siehe 1/3. Durch das Verändern von Pi nach deiner Vorschrift folgt nicht, dass die so erstellte Zahl irrational ist. Oder übersehe ich etwas?

[–] neeeeDanke@feddit.de 3 points 6 months ago (1 children)

Ne, aber warum sie irrational ist argue ich ja in dem *. (Strengenommen argue ich, dass entweder alle einsen in pi ersetzten, oder alle nicht-einsen ersetzen eine irrationale Zahl erzeugt.)

In anderen Worten: (alles in Base 10) Sei a die Zahl die ich erhalte, wenn ich in π alle Ziffern, die Eins sind durch Null ersetzte und b die Zahl, die ich erhalte, wenn ich in π alle Ziffern außer der Eins. Dann ist mindestens eine der Zahlen irrational.

Beweis: Wenn a irrational ist, sind wir fertig, im folgenden nehmen wir also an, dass a rational ist.

Nun zeigen wir per wiederspruch, dass b irrational ist: Angenommen b ist rational. Dann ist a+b rational (da a per Annahme a rational ist). Da aber a+b=π ist wäre dann auch pi rational, was ein Wiederspruch ist. Also muss b irrational sein.

[–] usb_finger@feddit.de 1 points 6 months ago

Ah dein Stern argument hatte ich schon wieder vergessen, bis ich meinen Kommentar geschrieben habe

[–] seSvxR3ull7LHaEZFIjM@feddit.de 2 points 6 months ago (1 children)

Ah, danke. Der Unterschied ist dann, dass Normale Zahlen unendliche und alle Zahlenfolgen beinhaltende Nachkommastellen haben, und Irrationale nur unendlich und nicht alle Zahlenfolgen enthaltend sind?

Mein Gedanke war, ob nicht auch sqrt(2) eine Normale Zahl wäre, davon ausgehend, dass Pi eine ist (laut Wikipedia muss das aber auch nicht sein). Ist eine Normale Zahl dann quasi nach Affen-Schreibmaschinen-Prinzip vergleichbar mit einer komplett zufälligen unendlichen Zahlenfolge? Wäre da nicht auch möglich, dass sie nie alle Zahlenfolgen enthält, egal wie lang? Mir erschließt sich nicht, was die Voraussetzung der Generation einer Normalen Zahl ist.

(Wer war da für die Benennung zuständig, das finde ich gar nicht normal...)

[–] neeeeDanke@feddit.de 2 points 6 months ago

Naja, so wie ich das verstehe sind irrationale Zahlen nicht zwingend normal, können es aber sein (ich vermute auch, dass alle rationalen Zahlen nicht normal sein können). Dein erster Absatz impliziert für mich, dass das zwei disjunkte Mengen sind.

Außerdem sind normale Zahlen (bzw. Folgen über einem Alphabet) so wie ich den Wikipedia-Artikel, der auch hier in den Kommentaren verlinkt ist, verstehe, nicht nur darüber definiert, dass jede Folge von Zahlen vorkommt, sondern auch, dass sie im Grenzwert alle (normiert auf die Länge) gleichwahrscheinlich sind.

Wurzel zwei ist wahrscheinlich auch nornmal, aber unbewiesen: https://statmodeling.stat.columbia.edu/2021/02/20/is-sqrt2-a-normal-number/ .

Finde den Namen auch ungeil, lässt sich halt auch schlecht googlen xD.