Ask Lemmy
A Fediverse community for open-ended, thought provoking questions
Please don't post about US Politics. If you need to do this, try !politicaldiscussion@lemmy.world
Rules: (interactive)
1) Be nice and; have fun
Doxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them
2) All posts must end with a '?'
This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?
3) No spam
Please do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.
4) NSFW is okay, within reason
Just remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com.
NSFW comments should be restricted to posts tagged [NSFW].
5) This is not a support community.
It is not a place for 'how do I?', type questions.
If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.
Reminder: The terms of service apply here too.
Partnered Communities:
Logo design credit goes to: tubbadu
view the rest of the comments
Thats another thing I don't get. Itf you look at your tv screen real close its all red/green/blue. Every pixel/cell, how does it appear different from far away
Okay you really want to fuck with your mind, brown is not a color. You can't not break down a rainbow and find brown anywhere in it. There is no such thing as brown light. Yet you can see it every day.
So how the heck is it rendered?
If I am remembering correctly it is mostly just a crap shade of red.
This is a much better explanation than I can give
https://youtu.be/wh4aWZRtTwU?feature=shared
Isn't pink generally the same phenomenon? Something about it being the "absence of green light" rather than its own distinct spot on the visible spectrum.
Human eyes have three kinds of cells (photoreceptors) for color detection. They each react to either red, green or blue light. If more than one of those cells are activated, your brain interprets the light based on what cells activated, and how strongly they activated. If red and green cells activates, the light is seen as yellow. The light is seen as white if all of them activates fully.
This also means that light bulbs can produce white light by simply producing three wavelengths (colors) of light. The problem with that kind of “fake” white is that colors will look wrong under such light due to the way how objects reflects light. This is very common with low quality LED lights, and even the best smart lights aren't very good at it. When buying LED lights, you might want to look at the CRI (Color Rendering Index) value and make sure it's above 90, or as high as possible.