this post was submitted on 06 Jan 2024
289 points (86.2% liked)

memes

10862 readers
3727 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to !politicalmemes@lemmy.world

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 2 years ago
MODERATORS
 

I considered deleting the post, but this seems more cowardly than just admitting I was wrong. But TIL something!

you are viewing a single comment's thread
view the rest of the comments
[–] balderdash9@lemmy.zip 4 points 1 year ago* (last edited 1 year ago) (1 children)

You're right that we don't need to, but mathematicians can use this method to prove that two infinite sets are the same size. This is how we know that the infinite set of whole numbers is the same size as the infinite set of integers. We can also prove that the set of real numbers is larger than the set of whole numbers.

I'm not quite sure how else to explain it, so I'll link a Numberphile video where they do the demonstration on paper: https://www.youtube.com/watch?v=elvOZm0d4H0&t=19s . Here you can see why it's useful to try to establish this 1-1 correspondence. If you can't do so, then the size of the two infinite sets are not equal.

[–] lugal@sopuli.xyz 4 points 1 year ago (1 children)

We can also prove that the set of rational numbers is larger than the set of whole numbers.

The video shows that rational numbers (aka fractions) are countable (or listable). Did you mean real numbers?

[–] balderdash9@lemmy.zip 3 points 1 year ago

Good catch, I'll edit that sentence