this post was submitted on 27 Dec 2023
771 points (98.6% liked)
Technology
60336 readers
3920 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
Do you have more details about that?
Yeah, I'm quite curious myself as to why it's more difficult. My chemistry knowledge is chem1 level so all I know is that sodium atoms are larger and the energy levels for state change are slightly different
I left a very brief explanation as a reply to the other user.
Well, sure, but you're asking me about something I saw in passing half a decade ago. Basically, the main difficulties with Na Ion Batteries and especially the "Glass Batteries" were the lack of proper cathode with which to create current and also maintain the structure against the naturally occurring atomic reshuffling. In particular there was controversy over John B. Goodenough's research because other battery scientists noted the electrodes both ends contained anode materials which should theoretically produce no electrochemical potential and therefor no cell voltage.
More modern attempts appear to use Graphene structures, which is promising in a lot of different ways: structural stability, durability, current, and material availability.
BTW Rest in Peace John, your good deeds outweigh the bad: a true scientist worth remembering for all time.
So basically we didn't have a material that could function as a cathode until now?
I'm not in the battery research field but I assume it's kind of like
We've got tons of puzzle pieces that we need to put together
and then we need to find an economically viable create more combined puzzle pieces at scale.