this post was submitted on 14 Oct 2023
101 points (92.4% liked)
Technology
59428 readers
3118 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
I understand your statement here and I agree with it. Yet I guess both you and the other user here (@cyd@lemmy.world) are missing what I am trying to describe. Maybe my explanation is not accurate and my understanding is not well developed.
Let me illustrate with an example : we can study new planes models :
a)- in a wind tunnel equipped with instrumentation (camera, smoke trail and so on), or
b)- with numerical simulations on a computer.
One method (a) is very specific to a very precise problem, it cannot be (easily) adapted to calculate various random problems. The other (b) is meant to be a versatile programmable computer and so can switch to a completely different problem in one microsecond.
For what I understand, so-called quantum computers (of today) are more like option (a).
Does this makes sense to you ?
I think what you're missing is that quantum computers aim to tackle computational problems that are classically intractable. In other words, option (b) does not exist, or takes the on the order of the age of the universe to run. Then, for all the numerous practical disadvantages of using a quantum system to perform the calculation, it would be the only game in town.