this post was submitted on 15 Sep 2023
134 points (86.8% liked)

Showerthoughts

29698 readers
1249 users here now

A "Showerthought" is a simple term used to describe the thoughts that pop into your head while you're doing everyday things like taking a shower, driving, or just daydreaming. A showerthought should offer a unique perspective on an ordinary part of life.

Rules

  1. All posts must be showerthoughts
  2. The entire showerthought must be in the title
  3. Avoid politics
    1. NEW RULE as of 5 Nov 2024, trying it out
    2. Political posts often end up being circle jerks (not offering unique perspective) or enflaming (too much work for mods).
    3. Try c/politicaldiscussion, volunteer as a mod here, or start your own community.
  4. Posts must be original/unique
  5. Adhere to Lemmy's Code of Conduct-----

founded 1 year ago
MODERATORS
 

I mean why 5, why 5 on each limb, why not 4 or 6. Why do our feet also have 5. Whats with our body being so symmetrical.

People who know anything about evolution, now is your time to shine.

you are viewing a single comment's thread
view the rest of the comments
[–] intensely_human@lemm.ee 91 points 1 year ago (5 children)

Symmetry is useful for locomotion. It’s an easy way to get backup instances of things. By “easy” I mean it doesn’t take much “code” to accomplish for the value it produces.

When something is more valuable and “cheaper”/“easier” requiring less code to set up, it’s more likely to be selected for.

Basically, evolution produces organisms that work well in the environment, mainly by the environment trimming off the ones that don’t work there.

Well it turns out you can achieve all sorts of forward locomotion just by having two mirror copies of a thing and moving the mirror copies in an off-phase rhythm. Once you’ve got that back-and-forth timing, your body just needs to tend forward and suddenly you’re mobile.

Let’s look at it another way. One requirement for mobility is a direction. You can’t move without moving in a direction. A direction is a line. You can create movability by varying an organism’s form along the line of travel. The introduction of additional lines dilutes the motion-enabling asymmetry across multiple vectors.

The body form that concentrates the most variation along a single line is bilateral symmetry. Radial symmetry diffuses that variation across multiple lines, and hence doesn’t create motion.

I know I’m being really, really abstract here, but it’s a concrete fact of motion and geometry. Let me take another stab at summarizing why bilateral symmetry enable motion:

  • simplest one-line directional geometry is actually radially symmetric. Think of a coke bottle or a flower. It has a line.
  • bilateral symmetry actually has a plane, leading to more diffusion of aim
  • but bilateral symmetry makes neural control easier: your signal just has to be A-B-A-B-A-B… . Left, right, left, right, etc
  • With your radially symmetric form you need signaling like: A-B-C-D-E-A-B-C-D-E-A-B… . Like tuning the cylinders on a turboprop engine. This is how flagella move: in a corkscrew shape. It’s hard to coordinate.

Shit I’m just making it more complex. Bilateral symmetry gives you a nice combination of directionality (enforced by the way gravity squishes that plane down into a line of movement).

This is why you see more bilateral symmetry as organisms get larger: gravity requires asymmetric designs to be stable across the gradient. You see those circular-firing motility types at a more micro scale, where the effect of gravity is smaller. That radially-symmetric torpedo-sperm-flower-coke bottle shape needs to be in a well-organized circle in order for its thrust to not send the organism off on a crazy tangent, or best case traveling on an inefficient helical path. And even if the path is helical, that will only tend in a straight line, ie toward a target, if it’s not being distorted by gravity.

So the microscopic realm, where gravity is more negligible, you see more organisms that use a helical strategy for motion.

As gravity gets more primary, at larger scales, you start getting shapes like fish that always keep one side up and another side down. And the way the fish moves, despite having variation top to bottom as well as front to back, is by having no variation left to right. That lack of left-right variation allows the complementary action of its left and right to balance out to a straight line.

Following the A-B-A-B firing pattern, the fish moves its tail back and forth and achieves forward motion.

I hope that helped at least a bit. I know it was convoluted.

And shine you did!

[–] imaqtpie@sh.itjust.works 8 points 1 year ago

Damn. That's fucking awesome, thank you for the explanation.

[–] Tangent5280@lemmy.world 6 points 1 year ago (1 children)

Hi, what school of science is this? What sort of textbook might explain the things you just did?

[–] intensely_human@lemm.ee 3 points 1 year ago* (last edited 1 year ago) (1 children)

None that I’m aware of, that was my own synthesis based on my own thinking.

edit: actually robotics might have some insight into this

[–] Num10ck@lemmy.world 2 points 1 year ago (1 children)

illustrate this and publish it.

[–] intensely_human@lemm.ee 1 points 11 months ago

I was gonna say “too lazy” but there is AI now so maybe I can have my minions do it for me

[–] Eq0@literature.cafe 2 points 1 year ago

Thanks, that’s a great read!

[–] mitrosus@discuss.tchncs.de 1 points 1 year ago

Thank you. But this doesn't explain the number of digits in hands and feet, does it? Great read BTW.