this post was submitted on 04 Sep 2023
155 points (91.9% liked)

Ask Lemmy

27281 readers
2273 users here now

A Fediverse community for open-ended, thought provoking questions


Rules: (interactive)


1) Be nice and; have funDoxxing, trolling, sealioning, racism, and toxicity are not welcomed in AskLemmy. Remember what your mother said: if you can't say something nice, don't say anything at all. In addition, the site-wide Lemmy.world terms of service also apply here. Please familiarize yourself with them


2) All posts must end with a '?'This is sort of like Jeopardy. Please phrase all post titles in the form of a proper question ending with ?


3) No spamPlease do not flood the community with nonsense. Actual suspected spammers will be banned on site. No astroturfing.


4) NSFW is okay, within reasonJust remember to tag posts with either a content warning or a [NSFW] tag. Overtly sexual posts are not allowed, please direct them to either !asklemmyafterdark@lemmy.world or !asklemmynsfw@lemmynsfw.com. NSFW comments should be restricted to posts tagged [NSFW].


5) This is not a support community.
It is not a place for 'how do I?', type questions. If you have any questions regarding the site itself or would like to report a community, please direct them to Lemmy.world Support or email info@lemmy.world. For other questions check our partnered communities list, or use the search function.


6) No US Politics.
Please don't post about current US Politics. If you need to do this, try !politicaldiscussion@lemmy.world or !askusa@discuss.online


Reminder: The terms of service apply here too.

Partnered Communities:

Tech Support

No Stupid Questions

You Should Know

Reddit

Jokes

Ask Ouija


Logo design credit goes to: tubbadu


founded 2 years ago
MODERATORS
 

Exactly as the title asks.

Pure oxygen is generally represented as O2 yet oxygen is an element of the periodic table. Why is it O2 and not just O?

you are viewing a single comment's thread
view the rest of the comments
[–] PrunesMakeYouPoop@kbin.social 57 points 1 year ago (5 children)

There are 7 elements that will naturally form covalent bonds with themselves.
Here is how to remember these diatomic elements:

(H)ave (N)o (F)ear (O)f (I)ce (Cl)old (Br)eer.
The Ice is solid, the beer is liquid, and everything else is a gas.

[–] MrJukes@lemmy.one 24 points 1 year ago

And who doesn't enjoy cracking open a nice clold breer?

[–] kryptonicus@lemmy.world 10 points 1 year ago (1 children)

Hydrogen, Nitrogen, Flourine, Oxygen, Iodine, Chlorine, and Bromine

[–] nyoooom@lemmy.world 9 points 1 year ago

Flour is made out of flourine

[–] Fogle@lemmy.ca 4 points 1 year ago

That sounds more complicated than what I've remembered. Which is simply hofbrincl

[–] xkforce@lemmy.world 2 points 1 year ago* (last edited 1 year ago)

Those are the 7 that form diatomic molecules not the only elements that form covalent bonds with other atoms of that element. The s block excluding hydrogen, d block and f block are all metals and are held together with metallic bonds which are a type of covalent bond. Mercury forms weak, transient metallic bonds in its elemental form but robust bonds in the Hg2(2+) dication. Sulfur, Selenium and Tellurium form rings and chains, the former being typically 8 atoms and the latter being hundreds or thousands of atoms in length. Phosphorus is in the form of P4 molecules in white phosphorus and is a network covalent solid in many of its other allotropes. Eg. black phosphorus is a series of stacked undulating chicken wire sheets. Arsenic and Antimony similarly adopt this undulating chicken wire sheet structure as well. Bismuth, lead, polonium, aluminum, gallium, thallium and tin are all metals held together with metallic bonds. Carbon, silicon and germanium commonly form the cubic diamond structure although carbon is most stable as graphite (stacked chicken wire) and can form molecules like fullerene and nanotubes as well as chains (carbyne). Boron tends to form crystals containing icosahedrons. The only elements that rarely react with other elements let alone form covalent bonds with one another in bench stable compounds are the noble gases: Helium, Neon, Argon, Krypton, Xenon and Oganesson.