this post was submitted on 11 Feb 2025
600 points (98.1% liked)

Technology

62073 readers
5400 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each other!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed
  10. Accounts 7 days and younger will have their posts automatically removed.

Approved Bots


founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
[–] Saleh@feddit.org 2 points 3 hours ago

I am sorry, but your ideas about how these things work are ignoring a lot of issues.

First of all you have significant losses in the distribution grid. This is minimized the higher your voltage is, which is why longer range grids run on 110 kV and more. Then you have an intermediate level, typically 20 kV. Finally you get your local distribution with 220/230V. Also "current flowing the other way" does not exist in AC, because the "direction" changes 50x per second.

Then you only have a limited transportation capacity, so moving a lot of electricity from a central plant of course costs a lot of investment and maintenance. The idea that "Transporting it is for all intents and purposes free" is completely out of touch with the reality of the electrical grid.

But it gets worse. The more producers and consumers you have, the more you will need to balance fluctuations in production and consumption. This is why traditional grids were built around having a high baseload, with incentivizing high demand industries to connect, stabilizing demand. For renewables this is completely different, because renewabls will fluctuate. So the more energy you run through the centralized grid, the more short and medium term storages you will need to provide and the more investment and running costs you will have.

You mention this with there being too much production on the local grid and then in another place also needing to react to this. This is not a problem exclusive to local grids. It is a problem for any level of the grid with integrating renewables. Note how the article also mentions the limit of 800W without requiring a permit.

Finally in the long term we need to make the demand more flexible to production. So if the sun shines and the wind blows, household appliances should run, the fridge should cool a bit stronger, and the water heater heats up for the evening shower... Having a responsive demand with millions of agents can easily lead to overshooting, so that the demand spikes up far beyond supply, because every consumer reacts at the same time and it doesn't temper out.

This problem is much smaller, if every household can directly see their own production and consumption and already limit how much excess goes into, or is demanded.

So microgeneration is part of the solution and not a problem like you make it out to be.