this post was submitted on 03 Aug 2023
588 points (97.6% liked)

No Stupid Questions

36303 readers
1302 users here now

No such thing. Ask away!

!nostupidquestions is a community dedicated to being helpful and answering each others' questions on various topics.

The rules for posting and commenting, besides the rules defined here for lemmy.world, are as follows:

Rules (interactive)


Rule 1- All posts must be legitimate questions. All post titles must include a question.

All posts must be legitimate questions, and all post titles must include a question. Questions that are joke or trolling questions, memes, song lyrics as title, etc. are not allowed here. See Rule 6 for all exceptions.



Rule 2- Your question subject cannot be illegal or NSFW material.

Your question subject cannot be illegal or NSFW material. You will be warned first, banned second.



Rule 3- Do not seek mental, medical and professional help here.

Do not seek mental, medical and professional help here. Breaking this rule will not get you or your post removed, but it will put you at risk, and possibly in danger.



Rule 4- No self promotion or upvote-farming of any kind.

That's it.



Rule 5- No baiting or sealioning or promoting an agenda.

Questions which, instead of being of an innocuous nature, are specifically intended (based on reports and in the opinion of our crack moderation team) to bait users into ideological wars on charged political topics will be removed and the authors warned - or banned - depending on severity.



Rule 6- Regarding META posts and joke questions.

Provided it is about the community itself, you may post non-question posts using the [META] tag on your post title.

On fridays, you are allowed to post meme and troll questions, on the condition that it's in text format only, and conforms with our other rules. These posts MUST include the [NSQ Friday] tag in their title.

If you post a serious question on friday and are looking only for legitimate answers, then please include the [Serious] tag on your post. Irrelevant replies will then be removed by moderators.



Rule 7- You can't intentionally annoy, mock, or harass other members.

If you intentionally annoy, mock, harass, or discriminate against any individual member, you will be removed.

Likewise, if you are a member, sympathiser or a resemblant of a movement that is known to largely hate, mock, discriminate against, and/or want to take lives of a group of people, and you were provably vocal about your hate, then you will be banned on sight.



Rule 8- All comments should try to stay relevant to their parent content.



Rule 9- Reposts from other platforms are not allowed.

Let everyone have their own content.



Rule 10- Majority of bots aren't allowed to participate here.



Credits

Our breathtaking icon was bestowed upon us by @Cevilia!

The greatest banner of all time: by @TheOneWithTheHair!

founded 2 years ago
MODERATORS
 

What concepts or facts do you know from math that is mind blowing, awesome, or simply fascinating?

Here are some I would like to share:

  • Gödel's incompleteness theorems: There are some problems in math so difficult that it can never be solved no matter how much time you put into it.
  • Halting problem: It is impossible to write a program that can figure out whether or not any input program loops forever or finishes running. (Undecidablity)

The Busy Beaver function

Now this is the mind blowing one. What is the largest non-infinite number you know? Graham's Number? TREE(3)? TREE(TREE(3))? This one will beat it easily.

  • The Busy Beaver function produces the fastest growing number that is theoretically possible. These numbers are so large we don't even know if you can compute the function to get the value even with an infinitely powerful PC.
  • In fact, just the mere act of being able to compute the value would mean solving the hardest problems in mathematics.
  • Σ(1) = 1
  • Σ(4) = 13
  • Σ(6) > 10^10^10^10^10^10^10^10^10^10^10^10^10^10^10 (10s are stacked on each other)
  • Σ(17) > Graham's Number
  • Σ(27) If you can compute this function the Goldbach conjecture is false.
  • Σ(744) If you can compute this function the Riemann hypothesis is false.

Sources:

you are viewing a single comment's thread
view the rest of the comments
[–] WtfEvenIsExistence@reddthat.com 31 points 1 year ago* (last edited 1 year ago) (1 children)

Collatz conjecture or sometimes known as the 3x+1 problem.

The question is basically: Does the Collatz sequence eventually reach 1 for all positive integer initial values?

Here's a Veritasium Video about it: https://youtu.be/094y1Z2wpJg

Basically:

You choose any positive integer, then apply 3x+1 to the number if it's odd, and divide by 2 if it's even. The Collatz conjecture says all positive integers eventually becomes a 4 --> 2 --> 1 loop.

So far, no person or machine has found a positive integer that doesn't eventually results in the 4 --> 2 --> 1 loop. But we may never be able to prove the conjecture, since there could be a very large number that has a collatz sequence that doesn't end in the 4-2-1 loop.

[–] Caboose12000@lemmy.world 4 points 1 year ago* (last edited 1 year ago) (3 children)

maybe this will make more sense when I watch the veritasium video, but I don't have time to do that until the weekend. How is 3x+1 unprovable? won't all odd numbers multiplied by 3 still be odd? and won't adding 1 to an odd number always make it even? and aren't all even numbers by definition divisible by 2? I'm struggling to see how there could be any uncertainty in this

[–] WtfEvenIsExistence@reddthat.com 11 points 1 year ago* (last edited 1 year ago)

The number 26 reaches as high as 40 before falling back to 4-2-1 loop. The very next number, 27, goes up to 9232 before it stops going higher. For numbers 1 to 10,000 most of them reach a peak of less than 100,000, but somehow, the number 9663 goes up to 27,114,424 before trending downwards. The uncertainty is that what if there is a special number that doesn't just stop at a peak, but goes on forever. I'm not really good at explaining things, so you're gonna have to watch the video.

[–] Jerkface@lemmy.ml 5 points 1 year ago* (last edited 1 year ago)

Just after going through a few examples in my head, the difficulty becomes somewhat more apparent. let's start with 3. This is odd, so 3(3)+1 = 10. 10 is even so we have 10/2=5.

By this point my intuition tells me that we don't have a very obvious pattern that we can use to decide whether the function will output 4, 2, or 1 by recursively applying the function to its own output, other than the fact that every other number that we try appears to result in this pattern. We could possibly reduce the problem to whether we can guess that the function will eventually output a power of 2, but that doesn't sound to me like it makes things much easier.

If I had no idea whether a proof existed, I would guess that it may, but that it is non-trivial. Or at least my college math courses did not prepare me to find one. Since it looks like plenty of professional mathematicians have struggled with it, I have no doubt that if a proof exists it is non-trivial.

[–] mipadaitu@lemmy.world 2 points 1 year ago

The unproven part is that it eventually will reach 1, not that it's not possible to do the computation. Someone may find a number loop that doesn't eventually reach 1.