this post was submitted on 11 Sep 2024
424 points (97.5% liked)
Science Memes
11091 readers
3129 users here now
Welcome to c/science_memes @ Mander.xyz!
A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.
Rules
- Don't throw mud. Behave like an intellectual and remember the human.
- Keep it rooted (on topic).
- No spam.
- Infographics welcome, get schooled.
This is a science community. We use the Dawkins definition of meme.
Research Committee
Other Mander Communities
Science and Research
Biology and Life Sciences
- !abiogenesis@mander.xyz
- !animal-behavior@mander.xyz
- !anthropology@mander.xyz
- !arachnology@mander.xyz
- !balconygardening@slrpnk.net
- !biodiversity@mander.xyz
- !biology@mander.xyz
- !biophysics@mander.xyz
- !botany@mander.xyz
- !ecology@mander.xyz
- !entomology@mander.xyz
- !fermentation@mander.xyz
- !herpetology@mander.xyz
- !houseplants@mander.xyz
- !medicine@mander.xyz
- !microscopy@mander.xyz
- !mycology@mander.xyz
- !nudibranchs@mander.xyz
- !nutrition@mander.xyz
- !palaeoecology@mander.xyz
- !palaeontology@mander.xyz
- !photosynthesis@mander.xyz
- !plantid@mander.xyz
- !plants@mander.xyz
- !reptiles and amphibians@mander.xyz
Physical Sciences
- !astronomy@mander.xyz
- !chemistry@mander.xyz
- !earthscience@mander.xyz
- !geography@mander.xyz
- !geospatial@mander.xyz
- !nuclear@mander.xyz
- !physics@mander.xyz
- !quantum-computing@mander.xyz
- !spectroscopy@mander.xyz
Humanities and Social Sciences
Practical and Applied Sciences
- !exercise-and sports-science@mander.xyz
- !gardening@mander.xyz
- !self sufficiency@mander.xyz
- !soilscience@slrpnk.net
- !terrariums@mander.xyz
- !timelapse@mander.xyz
Memes
Miscellaneous
founded 2 years ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
But the first few values are:
1 + 1/3 + 1/6 + 1/10 + 1/15 + 1/21 + 1/28...
I really don't see any pattern there showing why it converges to 2 exactly
Edit:
After thinking some more, you could write the sum as:
(Sum from n=1 to infinity of): 2/(n * (n + 1))
That sum is smaller than the sum of:
2 * (1/n^2^) which converges to π^2^/3
So I can see why it converges, just not where to.
I didn't see the pattern either and had to look it up. Apparently, you can rewrite 1 + 1/(1+2) + 1/(1+2+3)+... as 2(1 - 1/2 + 1/2 - 1/3 +...+1/n - 1/(n + 1)) = 2(1 - 1/(n + 1))
From there, the limit of 2 is obvious, but I guess you just have to build up intuition with infinite sums to see the reformulation.
So the amount you are adding is getting smaller with each iteration, 1/4 is smaller than 1/2, however you are still adding 1/4 on top of the 1/2, and those two are combined, closer to "1" than either of them independently correct? (1/2 +1/4 =1/3. 1/3>1/2)
So if the number gets bigger forever than at some point it will eventually hit "1", since we already started with "1" the next "1" will be "2"
I hope I'm explaining it well enough, it's similar to how 3.33(repeating)x3...=10 (though technically for different reasons)
Those add to 1.75, just keep adding (infinitely)