this post was submitted on 20 Jun 2023
12 points (100.0% liked)

Technology

31 readers
1 users here now

This magazine is dedicated to discussions on the latest developments, trends, and innovations in the world of technology. Whether you are a tech enthusiast, a developer, or simply curious about the latest gadgets and software, this is the place for you. Here you can share your knowledge, ask questions, and engage in discussions on topics such as artificial intelligence, robotics, cloud computing, cybersecurity, and more. From the impact of technology on society to the ethical considerations of new technologies, this category covers a wide range of topics related to technology. Join the conversation and let's explore the ever-evolving world of technology together!

founded 2 years ago
 

Identifying hit songs is notoriously difficult. Traditionally, song elements have been measured from large databases to identify the lyrical aspects of hits. We took a different methodological approach, measuring neurophysiologic responses to a set of songs provided by a streaming music service that identified hits and flops. We compared several statistical approaches to examine the predictive accuracy of each technique. A linear statistical model using two neural measures identified hits with 69% accuracy. Then, we created a synthetic set data and applied ensemble machine learning to capture inherent non-linearities in neural data. This model classified hit songs with 97% accuracy. Applying machine learning to the neural response to 1st min of songs accurately classified hits 82% of the time showing that the brain rapidly identifies hit music. Our results demonstrate that applying machine learning to neural data can substantially increase classification accuracy for difficult to predict market outcomes.

you are viewing a single comment's thread
view the rest of the comments
[–] Ski@kbin.social 3 points 1 year ago

Does this mean that AI can generate songs specifically to be chart toppers now?