the_dunk_tank
It's the dunk tank.
This is where you come to post big-brained hot takes by chuds, libs, or even fellow leftists, and tear them to itty-bitty pieces with precision dunkstrikes.
Rule 1: All posts must include links to the subject matter, and no identifying information should be redacted.
Rule 2: If your source is a reactionary website, please use archive.is instead of linking directly.
Rule 3: No sectarianism.
Rule 4: TERF/SWERFs Not Welcome
Rule 5: No ableism of any kind (that includes stuff like libt*rd)
Rule 6: Do not post fellow hexbears.
Rule 7: Do not individually target other instances' admins or moderators.
Rule 8: The subject of a post cannot be low hanging fruit, that is comments/posts made by a private person that have low amount of upvotes/likes/views. Comments/Posts made on other instances that are accessible from hexbear are an exception to this. Posts that do not meet this requirement can be posted to !shitreactionariessay@lemmygrad.ml
Rule 9: if you post ironic rage bait im going to make a personal visit to your house to make sure you never make this mistake again
view the rest of the comments
They can be, it depends on their ancestry
This study published data from 50,000 DNA tests (F adjusted column - Additional file 1: Dataset 1)
It does note that:
There were interesting exceptions to the correlation of inbreeding and health. The Border terrier, Basenji, Collie, and English setter breeds have high inbreeding but low morbidity. Likewise, the Malinois, Pomeranian and Russian Tsvetnaya Bolonka (Russian Toy) have lower inbreeding and high morbidity. These example breeds are neither brachycephalic nor particularly known for extreme morphologies. In the case of healthy breeds with high inbreeding, it may be possible that these breeds have been purged of deleterious alleles as has happened with inbred mouse strains [46]. In the opposite situation (lower inbreeding and high morbidity), the recorded morbidities could be high allele frequency Mendelian diseases or potentially conditions linked to phenotypes under selection in the breed.
You can also look at the plots in the study and see that while a high degree of inbreeding is associated with considerably higher mortality, there's a huge amount of overlap. You can do dog eugenics and get very unhealthy dogs, but you can't do dog eugenics and get dogs that will never have any health conditions (except the worst physiological ones that only exist because of ridiculous amounts of inbreeding).