MorphMoe

306 readers
3 users here now

Anthropomorphized everyday objects etc. If it exists, someone has turned it into an anime-girl-or-guy.

  1. Posts must feature "morphmoe". Meaning non-sentient things turned into people.
  2. No nudity. Lewd art is fine, but mark it NSFW.
  3. If posting a more suggestive piece, or one with simply a lot of skin, consider still marking it NSFW.
  4. Include a link to the artist in post body, if you can.
  5. AI Generated content is not allowed.
  6. Positivity only. No shitting on the art, the artists, or the fans of the art/artist.
  7. Finally, all rules of the parent instance still apply, of course.

SauceNao can be used to effectively reverse search the creator of a piece, if you do not know it.

You may also leave the post body blanks or mention @saucechan@ani.social, in which case the bot will attempt to find and provide the source in a comment.

Find other anime communities which may interest you: Here

Other "moe" communities:

founded 7 months ago
MODERATORS
1
 
 

Artist: Zhvo | pixiv | twitter | danbooru

Full quality: .png 2 MB (1600 × 2400)

2
 
 

Artist: Matilda Fiship | twitter | danbooru

3
 
 

Artist: Tom-Neko | fediverse | pixiv | twitter | danbooru

Full quality: .jpg 1 MB (1644 × 1308)

4
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Electric girls on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original

This is the last one in the series. Bye!

5
 
 

Artist: Matilda Fiship | twitter | danbooru

6
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Electric girls on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

7
 
 

Artist: Sima Naoteng | pixiv | twitter | danbooru

Full quality: .jpg 2 MB (3440 × 1500)

8
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Electric girls on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

9
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Gazebo on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

10
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: The Infinity Gauntlet on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

11
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Frostpunk Automaton on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original

See also: Land Dreadnought

12
1
submitted 2 weeks ago* (last edited 2 weeks ago) by ChaoticNeutralCzech@lemmy.one to c/morphmoe@ani.social
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Crabsquid on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original

See also: Seamoth and other Subnautica creatures in the comments

13
 
 

Artist: Katahira Masashi | pixiv | danbooru

14
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: D20 on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

15
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Knifehead Kaiju on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original

16
 
 

Artist: Shycocoa | pixiv | twitter | artstation | danbooru

Full quality: .jpg 1 MB (2289 × 2000)

17
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Robot (vacuum) cleaner on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

18
 
 

Artist: Dishwasher1910 | fediverse | pixiv | twitter | artstation | patreon | danbooru

Full quality: .png 6 MB (5227 × 2650)

19
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: The Satellite-girl on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original

This is the Horizon satellite from Random-tan Studio's cybermoe comic Sammy, page 18, prior to remastering.

20
 
 

Artist: Matilda Fiship | twitter | deviantart | danbooru

Full quality: .png 10 MB (5560 × 4298)

21
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Watchers on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

22
 
 

Source: Instagram

23
 
 

Artist: Gia | pixiv | twitter | tumblr | deviantart | danbooru

24
 
 

Artist: Rinotuna | pixiv | twitter | artstation | linktree | patreon | danbooru

25
 
 

Artist: Onion-Oni aka TenTh from Random-tan Studio
Original post: Blimp on Tapas (warning: JS-heavy site)

Upscaled by waifu2x (model: upconv_7_anime_style_art_rgb). Original
Unlike photos, upscaling digital art with a well-trained algorithm will likely have little to no undesirable effect. Why? Well, the drawing originated as a series of brush strokes, fill areas, gradients etc. which could be represented in a vector format but are instead rendered on a pixel canvas. As long as no feature is smaller than 2 pixels, the Nyquist-Shannon sampling theorem effectively says that the original vector image can therefore be reconstructed losslessly. (This is not a fully accurate explanation, in practice algorithms need more pixels to make a good guess, especially if compression artifacts are present.) Suppose I gave you a low-res image of the flag of South Korea 🇰🇷 and asked you to manually upscale it for printing. Knowing that the flag has no small features so there is no need to guess for detail (this assumption does not hold for photos), you could redraw it with vector shapes that use the same colors and recreate every stroke and arc in the image, and then render them at an arbitrarily high resolution. AI upscalers trained on drawings somewhat imitate this process - not adding detail, just trying to represent the original with more pixels so that it loooks sharp on an HD screen. However, the original images are so low-res that artifacts are basically inevitable, which is why a link to the original is provided.

view more: next ›